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Given an unbounded domain O located outside an angle domain with vertex at the

origin, and a sequence of distinct complex numbers ftng ðn ¼ 1; 2; . . .Þ satisfying
n
jtn j

! D as n! 1 with 05D51; and jargðtnÞj5a5p
2
; we obtain a completeness

theorem for the system fztng ðn ¼ 1; 2; . . .Þ in L2a½O
: The case with weight is also

considered. # 2002 Elsevier Science (USA)

Key Words: mean square approximation; complex M .uuntz theorem; unbounded

domain.
1. INTRODUCTION

Let O be a domain in the complex z plane, and L2a½O
 be the set of all
functions f which are analytic in O withZ Z

O
jfðzÞj2 ds51; z ¼ xþ iy;

where ds is the area element in the z plane (i.e., ds ¼ dx dy ¼ r dr dy for
z ¼ xþ iy ¼ reiy). For f;c 2 L2a½O
; define the inner product

ðf;cÞ ¼
Z Z

O
fðzÞcðzÞ ds;

and norm jjfjj ¼ ðf;fÞ1=2: With these, L2a½O
 is a Hilbert space (see for
example [6, Chap. 1]).

For hn 2 L2a½O
 ðn ¼ 1; 2; . . .Þ; we say that the system fhng is complete in
L2a½O
 if for any g 2 L

2
a½O
;

inf
h2S

jjg
 hjj ¼ 0;

where S denotes the linear span in L2a½O
 of fhng:
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FIG. 1. Dzhrbasian domain.

BOIVIN AND ZHU2
It is natural to try to characterize, for example, those bounded domains O
for which the polynomials are dense in L2a½O
; that is to study the
completeness of the system f1; z; z2; . . .g in L2a½O
: This is a very delicate
topological and geometrical problem and a complete answer is known only
in special cases. This is in sharp contrast with the simple topological
characterization of domains obtained in the study of polynomial uniform

approximation. We refer the reader to [6] for a nice survey of these questions
(and many others).

In view of the M .uuntz–Sz!aasz theorem (see [9, Chap. 15] or [3, Chap. 6.2]),
it is also natural to consider the completeness in L2a½O
 of fz

tng where ftng is
a sequence of complex numbers (and in general 0 =2 O). When O is bounded,
this problem seems to have been first studied by Carleman [2].

These questions have also been considered on special unbounded domains
by Dzhrbasian [4], Mergelyan [8] and Shen [10, 11]. We now proceed to
describe their results.

Let O be an unbounded simply connected domain satisfying the following
conditions (we will call such a domain a Dzhrbasian domain (see Fig. 1)):

Condition OðIÞ: For r > 0; let sðrÞ denote the linear measure of the
intersection of the circle jzj ¼ r and O: We suppose there exists r0 > 0 such
that for r > r0;

sðrÞ4e
pðrÞ;
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where pðrÞ > 0 satisfies

pðrÞ ¼ pðr0Þ þ
Z r

r0

oðtÞ
t
dt ð1Þ

with oðrÞ50 and oðrÞ " 1 as r ! 1:

Condition OðIIÞ: It is assumed that the complement of O consists of m
unbounded simply connected domains Gi ði ¼ 1; 2; . . . ;mÞ; each containing
an angle domain Di with opening p

ai
; ai > 1

2
:

Now let

W ¼ maxfa1; . . . ; amg; ð2Þ

where the aj are the constants appearing in Condition OðIIÞ: Under the
above conditions on O; Dzhrbasian proved that if

Z 1 pðrÞ
r1þW dr ¼ þ1

(where
R1

means that the lower limit of the integral is sufficiently large),
then the polynomial system f1; z; z2; � � �g is complete in L2a½O
:

Based on the results of Dzhrbasian, Shen [10] studied the completeness of
the system fztng in L2a½O
; where ftng

1
n¼1 is a sequence of complex numbers

satisfying the following conditions:

the tn are all distinct and lim
n!1

jtnj ¼ 1; ðIÞ

lim
n!1

n
jtnj

¼ D ð05D51Þ; ðIIÞ

ReðtnÞ > 0; jImðtnÞj5C; ðIIIÞ

where C is a constant.
Shen also assumed that O is a Dzhrbasian domain, but added the

requirement that the vertex of D1 is at the origin (hence that O does not
contain 0 (see Fig. 2). Shen proved that if

2a1ð1
 DÞ51;
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and for some e0; Z 1 pðrÞ
r1þZ dr ¼ 1;

where

Z ¼ max W;
1

1
a1

 2ð1
 DÞ

þ e0

 !
; ð3Þ

then the system fztng1n¼1 is complete in L2a½O
:
It follows from Condition (III) that argðtnÞ ! 0 as n! 1: In this paper, we

will relax this condition, allowing ImðtnÞ ! 1 as n! 1: Our definition of Z
will reduce to Shen’s definition (3) when the tn will lie in a strip. More precisely,
we assume that ftng satisfies Conditions (I) and (II), and the condition

jargðtnÞj5a5
p
2

ðIIIaÞ

rather than (III).
We also assume that O is a Dzhrbasian domain, with the added

requirement that D1 is the angle domain

D1 ¼ z : jargðzÞ 
 pj5
p
2g

� �
; ð4Þ

where g is a constant satisfying g > 1
2
:
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Some results of Shen obtained in [11], in particular, the residue estimate
on the expansion of generalized Dirichlet polynomials (see Lemmas 2.1, 2.2
and 2.3 below), will play a very important role in this paper.

We end this section with some very elementary facts which we will need
later.

Lemma 1.1 (see, for example, Gaier [6, Chap. 1]). A necessary and

sufficient condition for the system fhng to be complete in L2a½O
 is that: for any

f 2 L2a½O
; if ðf ; hnÞ ¼ 0 for all hn; then f ðzÞ � 0:

Lemma 1.2. Under our assumptions on tn and O; we have

ztn 2 L2a½O
; n ¼ 1; 2; . . . :

Remark 1. Of course, if tn is a non–negative integer, ztn is an entire
function. But in general, to define ztn ¼ expðtn log zÞ; we need to fix a branch
of the logarithm. For example, we can always choose the principal branch of
log z (which we will denote by Log z) since it is well defined on O (recall that
O is located outside D1 (see Fig. 2)).

Proof of Lemma 1.2. Let z ¼ reiy; tn ¼ jtnjeiyn ; then it is easy to see that

jztn j ¼ rjtn jcos yne
jtn jy sin yn :

Since jynj5a5p
2
; and when z 2 O; jyj5p
 p=ð2gÞ; it follows that there is a

constant c > 0 such that for z 2 O;

jztn j5ðcrÞjtn j:

Thus, by the assumptions on O; for fixed n ¼ 1; 2; . . . ;

Z Z
O
jztn j2 dx dy4

Z r0

0

2prðcrÞ2jtn j dr þ
Z 1

r0

sðrÞðcrÞ2jtn j dr

4
2pc2jtn jr2jtn jþ2

0

2jtnj þ 2
þ c2jtn j

Z 1

r0

e
pðrÞr2jtn j dr51:

Here we used Condition OðIÞ: Indeed, since n is fixed and oðrÞ " 1 as r !
1; we have oðrÞ > 2jtnj þ 2 for r sufficiently large, say r > r1: Without loss of
generality, we can assume that r1 > r0: Thus, by (1), we have for r > r1;

pðrÞ >
Z r

r1

oðtÞ
t
dt > ð2jtnj þ 2Þ

Z r

r1

1

t
dt
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and

e
pðrÞr2jtn j5exp 
ð2jtnj þ 2Þ
Z r

r1

dt
t

� �
r2jtn j ¼

r
r1

	 

ð2jtn jþ2Þ

r2jtn j ¼
r2jtn jþ2
1

r2
;

hence, Z 1

r0

e
pðrÞr2jtn j dr51: ]

Remark 2. A similar argument shows that under our assumptions on O;Z Z
O
ds51:

2. SOME LEMMAS

Consider the functions

T ðzÞ ¼
Y1
k¼1

1

z2

t2k

	 

ð5Þ

and

IðsÞ ¼ 

1

2p

Z 1


1

e
isy

T ðiyÞ
dy; s ¼ uþ iv: ð6Þ

For sufficiently small d > 0; let

Sd ¼ fs ¼ uþ iv: jvj4pD cos a
 dpg: ð7Þ

Under Conditions (I), (II) and (IIIa), by [11, Sect. 1], we have

Lemma 2.1. Given e > 0;

1

T ðiyÞ

����
����4CðeÞeð
pD cos aþeÞjyj;

where CðeÞ is a constant which depends only on e:

Lemma 2.2. The integral in (6) is convergent uniformly and absolutely in

Sd; hence the function IðsÞ is analytic and bounded in Sd for any sufficiently

small positive number d:
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Lemma 2.3. There exists a sequence ftng with n5tn5ð1
 lÞn (l is a

sufficiently small positive number) such that for s ¼ uþ iv 2 Sd;

IðsÞ 

X
jtk j5tn

e
tks

T 0ðtkÞ

�����
�����4 Ctne
utn sinðmpÞ; ReðsÞ ¼ u50;

Ctne
utn ; ReðsÞ ¼ u40;

(
ð8Þ

where C is a constant independent of s and tn; while m is a small positive

number satisfying

tanðmpÞ5
d

D sin a
: ð9Þ

We will now transform the domain O of the z plane into a strip of the x
plane:

Let z ¼ ex; x ¼ x1 þ ix2 (or equivalently, x ¼ Log z). Suppose that the
image of O in the x plane is O0: By Condition OðIIÞ; since O is located outside
the angle domain defined by (4), it is clear that O0 must be located inside the
strip

Q0 ¼ x ¼ x1 þ ix2: jx2j5p 1

1

2g

	 
� �
:

Now we introduce two strips:

Qg ¼ s ¼ uþ iv: jvj5pD cos a
 p 1

1

2g

	 
� �
;

Qd
g ¼ s ¼ uþ iv: jvj4pD cos a
 dp
 p 1


1

2g

	 
� �
:

We assume now that

2gð1
 D cos aÞ51;

thus pD cos a
 pð1
 1
2gÞ > 0; and we take d so small that

05d5D cos a
 1þ
1

2g
; ð10Þ

and thus,

pD cos a
 dp
 p 1

1

2g

	 

> 0: ð11Þ

It is not hard to see then that if s 2 Qd
g and x 2 O0 (hence x 2 Q0), we must

have jImðs
 xÞj5pD cos a
 dp; i.e., s
 x 2 Sd: Hence, for any f ðzÞ 2 L2a½O
;
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we can define a function GðsÞ for s 2 Qd
g by

GðsÞ ¼
Z Z

O0
f ðexÞjexj2Iðs
 xÞ dx1 dx2; x ¼ x1 þ ix2: ð12Þ

By Lemma 2.2, when x 2 O0 is fixed, Iðs
 xÞ hence f ðexÞjexj2Iðs
 xÞ is
analytic for s 2 Qd

g ; when s 2 Q
d
g is fixed, f ðexÞjexj2Iðs
 xÞ is measurable for

x 2 O0; and Iðs
 xÞ is bounded for s 2 Qd
g ; x 2 O0: Thus, it is not hard to

prove using Remark 1.2 that GðsÞ is analytic in Qd
g (hence analytic in Qg since

d can be arbitrarily small) and bounded in Qd
g (see, for example, [9, Chap. 10,

Exercise 16; 1, Sect. 3]).
Now we prove an important lemma:

Lemma 2.4. If for s 2 Qd
g ; GðsÞ � 0 where GðsÞ is defined by (12), thenZ Z

O
f ðzÞzn dz ¼ 0; n ¼ 0; 1; 2; . . . : ð13Þ

Proof. Since s
 x 2 Sd when s 2 Qd
g ; x 2 O0; it follows from Lemma 2.2

that for s 2 Qd
g ; the integral

Iðs
 xÞ ¼ 

1

2p

Z 1


1

e
iðs
xÞy

T ðiyÞ
dy

converges uniformly and absolutely with respect to x ¼ x1 þ ix2 2 O0:
Hence, we can interchange the order of integrations in (12):

GðsÞ ¼ 

1

2p

Z 1


1

e
isy

T ðiyÞ

Z Z
O0
f ðexÞjexj2eiyx dx1dx2

� �
dy � 0; s 2 Qd

g : ð14Þ

Let

lðyÞ ¼
1

T ðiyÞ

Z Z
O0
f ðexÞjexj2eiyx dx1 dx2:

It can be proved that lðyÞ 2 L2ð
1;1Þ: Indeed, there exist e1 > 0; C > 0
such that for y 2 ð
1;1Þ;

jlðyÞj4
Z Z

O0
f ðexÞjexj2 dx1 dx2

����
���� 1

jT ðiyÞj
max
x2O0

jeiyxj

4Ceð
pD cos aþeÞjyje
pð1
 1

2gÞjyj

5Ce
e1 jyj:

Here we used: (i) f ðzÞ 2 L2a½O
; and (ii) Lemma 2.1 and the fact that pD cos
a
 pð1
 1=ð2gÞÞ > 0 to produce the constant C > 0 and e1 > 0; respectively.
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Thus, by Plancherel theorem (see [9, Theorem 9.13]) and (14), we have

Z 1


1
jlðyÞj2 dy ¼ 0;

and for y 2 ð
1;1Þ; lðyÞ ¼ 0; i.e.,

Z Z
O0
f ðexÞjexj2eiyx dx1 dx2 ¼ 0; ð15Þ

since lðyÞ is continuous in ð
1;1Þ:
Consider the integral

H ðwÞ ¼
Z Z

O0
f ðexÞjexj2ewx dx1 dx2 ¼

Z Z
O
f ðzÞzw dx dy:

We claim that H ðwÞ is analytic in ReðwÞ > 
1
2
: Indeed, for any R > 0; when


1
2
4ReðwÞ4R; jImðwÞj4R;

Z Z
O
jf ðzÞzwj dx dy

¼
Z Z

O0
jf ðexÞjjexj2jewxj dx1 dx2

¼
Z Z

O0
jf ðexÞjjexj2eReðwÞx1
ImðwÞx2 dx1 dx2

4eRpð1
1=2gÞ
Z Z

O0
jf ðexÞjjexj2jexjReðwÞ dx1 dx2

4eRpð1
1=2gÞ
Z Z

O0

jex j51

jf ðexÞjjexj2jexjR dx1 dx2

"

þ
Z Z

O0

jex j51

jf ðexÞjjexj2jexj
1=2 dx1 dx2

#

4eRpð1
1=2gÞ
Z Z

O0
jf ðexÞjjexj2½jexjR þ jexj
1=2
 dx1 dx2

¼ eRpð1
1=2gÞ
Z Z

O
jf ðzÞj½jzjR þ jzj
1=2
 dx dy

4eRpð1
1=2gÞ
Z Z

O
jf ðzÞj2 dx dy

� �1=2 Z Z
O
½jzjR þ jzj
1=2
2 dx dy

� �1=2
:
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By using the same argument as in the proof of Lemma 1.2, we can get

Z Z
O
jzj2R dx dy51;

Z Z
O
jzjR
1=2 dx dy51;

Z Z
O
jzj
1 dx dy51:

Thus, for 
1
2
4ReðwÞ4R; jImðwÞj4R;

Z Z
O
jf ðzÞzwj dx dy51;

and by using similar arguments to that in [1, Sect. 3], we can prove, using
Remark 1.2, that H ðwÞ is analytic in 
1

2
5ReðwÞ5R; jImðwÞj5R: Since R

can be arbitrarily large, therefore H ðwÞ is analytic in ReðwÞ > 
1
2
:

By (15), for y 2 ð
1;1Þ;H ðiyÞ ¼ 0: This implies that H ðwÞ ¼ 0 for
ReðwÞ > 
1

2
: In particular, H ðnÞ ¼ 0; n ¼ 0; 1; 2; . . . ; i.e.,

Z Z
O
f ðzÞzn dx dy ¼ 0; n ¼ 0; 1; 2; . . . : ]

In order to prove our main theorem in Section 3, we need also the
following two results:

Lemma 2.5 (Carleman’s Theorem (see Levin [7, p. 105])). If gðwÞ is

analytic and bounded in the half-plane ImðwÞ50; and

Z 1


1

log
jgðtÞj
1þ t2

dt ¼ 1;

then gðwÞ � 0:

Lemma 2.6 (M.M. Dzhrbasian (see Mergelyan [8, Sect. 10, Lemma
1])). Let pðrÞ be given as in Condition OðIÞ; let

Mn ¼
Z 1

r0

exp½
pðrÞ
rn dr
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and

FðrÞ ¼ sup
n51

rnffiffiffiffiffiffiffiffi
M2n

p :

Then there exists q0 > 0 such that for r sufficiently large,

logFðrÞ5q0pðrÞ:

3. A COMPLETENESS THEOREM

Now we give the main result of this paper:

Theorem 1. Assume that the domain O and the sequence ftng satisfy

Conditions OðIÞ; OðIIÞ; ðIÞ; ðIIÞ; ðIIIaÞ and (4) given in Section 1. Moreover,
assume

2gð1
 D cos aÞ51: ð16Þ

Let

Z ¼ max W;
1

h
þ e0

� �
; ð17Þ

where W is defined in (2), e0 is some positive number, and

h ¼ max
05x5b

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 sin2 aþ x2

p 2D cos a
 2þ
1

g

 2x

� �( )
ð18Þ

with b ¼ D cos a 
 1þ 1
2g:

If Z 1 pðrÞ
r1þZ dr ¼ þ1; ð19Þ

then the system fzt1 ; zt2 ; zt3 ; . . .g is complete in L2a½O
:

Remark 3. Letting a ! 0 in (18), we recover Shen’s original condition
(see (3)).

Proof of Theorem 1. By Lemma 1.1, we only need to prove that if f 2
L2a½O
; and

ðf ðzÞ; ztnÞ ¼ 0; n ¼ 1; 2; 3; . . . ;

then f ðzÞ � 0: So, we assume that ðf ðzÞ; ztn Þ ¼ 0;¼ 1; 2; 3; . . . :
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Recalling the definition of GðsÞ (see (12)), we first note that we only need
to prove that GðsÞ � 0 for s 2 Qd

g : Indeed if so, by Lemma 2.4, we will
have

ðf ðzÞ; znÞ ¼ 0; n ¼ 0; 1; 2; . . . ; ð20Þ

and using M. Dzhrbasian’s result, assuming that

Z 1 pðrÞ
r1þo dr ¼ þ1; ð21Þ

the system fzng ðn ¼ 0; 1; 2; . . .Þ is complete in L2a½O
: It follows easily from
the conditions of our theorem that (21) is satisfied. Thus, by Lemma 1.1 and
(20), we will have f ðzÞ � 0 for z 2 O:

Now we prove that for s 2 Qd
g ; GðsÞ � 0: We will use Lemma 2.3. Let tn be

defined as in Lemma 2.3, i.e., n5tn5ð1
 lÞn (where l is a sufficiently small
positive number).

By (12), for s 2 Qd
g ;

GðsÞ ¼
Z Z

O0
f ðexÞjexj2 Iðs
 xÞ 


X
jtk j5tn

e
tk ðs
xÞ

T 0ðtkÞ

" #
dx1 dx2

þ
Z Z

O0
f ðexÞjexj2

X
jtk j5tn

e
tk ðs
xÞ

T 0ðtkÞ
dx1 dx2

¼:G1;tn ðsÞ þ G2;tn ðsÞ:

Since ðf ðzÞ; ztnÞ ¼ 0; n ¼ 1; 2; 3; . . . ; we have

Z Z
O0
f ðexÞjexj2etnx dx1 dx2 ¼ 0; n ¼ 1; 2; 3; . . . :

Thus,

G2;tnðsÞ ¼
X
jtk j5tn

e
tks

T 0ðtkÞ

Z Z
O0
f ðexÞjexj2etkx dx1 dx2 ¼ 0:

Hence, for s 2 Qd
g ; GðsÞ ¼ G1;tnðsÞ:
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By Lemma 2.3, for s ¼ uþ iv 2 Qd
g ;

jGðsÞj ¼ jG1;tn ðsÞj

4Ctn e
utn sinðmpÞ
Z Z

O0

Reðs
xÞ50

jf ðexÞjjexj2jexjtn sinðmpÞ dx1 dx2

"

þ e
utn
Z Z

O0

Reðs
xÞ40

jf ðexÞjjexj2jexjtn dx1 dx2

#
;

where C (and C1;C2 below) are constants independent of n and s:
Hence, for ReðsÞ ¼ u > 0; s 2 Qd

g ;

jGðsÞj4Ctn
R R

O jf ðzÞjjzjtn dx dy

jesjtnsinðmpÞ
þ

R R
O jf ðzÞjjzjtn dx dy

jesjtn

� �

4Ctn1

R R
O jf ðzÞjjzjtn dx dy

jesjtnsinðmpÞ
:

By Schwarz’s inequality,

jGðsÞj4Ctn1
½
R R

O jf ðzÞj2 dx dy
1=2½
R R

O jzj2tn dx dy
1=2

jesjtnsinðmpÞ
:

Note that Z Z
O
jzj2tn dx dy4

Z r0

0

2prr2tn dr þ
Z 1

r0

r2tnsðrÞ dr

4
2p

2tn þ 2
r2tnþ2
0 þ

Z 1

r0

r2tne
pðrÞ dr

4ctn1 þ ctn2

Z 1

r0

r2tn e
pðrÞ dr

4ctn3

Z 1

r0

r2tn e
pðrÞ dr;

where c1–c3 are positive constants independent of n and s:
Thus, since f 2 L2a½O
; we have

jGðsÞj4Ctn2
½
R1
r0
r2tne
pðrÞ dr
1=2

jesjtnsinðmpÞ
4Cn2

½
R1
r0
r2ne
pðrÞ dr
1=2

jesjð1
lÞn sinðmpÞ ;

where in the last step, we used the conditions ReðsÞ ¼ u > 0 and n5tn5
ð1
 lÞn:
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Since the above inequality holds for all n ¼ 1; 2; 3; . . . ; we have for
ReðsÞ ¼ u > 0; s 2 Qd

g ;

jGðsÞj4 inf
n51

Cn2
½
R1
r0
r2ne
pðrÞ dr
1=2

jesjð1
lÞn sinðmpÞ :

Now using Lemma 2.6, for

Mn ¼
Z 1

r0

rne
pðrÞ dr

and

Fð%rrÞ ¼ sup
n51

%rrnffiffiffiffiffiffiffiffi
M2n

p ;

where %rr ¼ cjesjð1
lÞsinðmpÞ with c a constant independent of s and n; then there
exists a constant q > 0 such that for ReðsÞ sufficiently large (i.e., %rr sufficiently
large),

1

Fð%rrÞ
4e
qpð%rrÞ:

Hence, for s 2 Qd
g and ReðsÞ > 0 sufficiently large, we have

jGðsÞj4
1

Fð%rrÞ
4e
qpðcje

s jð1
lÞ sinðmpÞÞ: ð22Þ

We know that GðsÞ is analytic in Qg and bounded in Qd
g : In order to use

Lemma 2.5 (Carleman’s theorem), we transform Qd
g (with respect to s) into

the upper half-plane ImðwÞ50:
(i) First, let w1 ¼ es: Then Qd

g is transformed into an angle domain
jargðw1Þj4pl; where by (11),

l ¼ D cos a
 d
 1þ
1

2g
> 0: ð23Þ

(ii) Let w2 ¼ w1=ð2lÞ
1 : The above angle domain is then transformed into the

right half-plane Reðw2Þ50:
(iii) Finally, let w ¼ iw2: The right half-plane is then transformed into the

upper half-plane ImðwÞ50:
Now, we have

jesj ¼ jw1j ¼ jw2l
2 j ¼ jð
iwÞ2lj ¼ jw2lj
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and

GðsÞ ¼ Gðlog w1Þ ¼ Gðlog w2l
2 Þ ¼ Gðlog ð
iwÞ2lÞ:

Let gðwÞ ¼ Gðlog ð
iwÞ2lÞ: Clearly, gðwÞ is analytic and bounded in the half-
plane ImðwÞ50: By (22), for ImðwÞ50 and jwj sufficiently large, we have

jgðwÞj4e
qpðcjwj
2lð1
lÞsinðmpÞÞ ¼ e
qpðcjwj

mÞ; ð24Þ

where c; q > 0 are constants independent of w; l is given by (23),
and

m ¼ 2lð1
 lÞ sinðmpÞ ¼ sinðmpÞ 2D cos a
 2þ
1

g

 2d

� �
ð1
 lÞ: ð25Þ

Recall that in (25): (i) D; a and g are fixed since they are determined by
ftng and O; respectively; (ii) l > 0 can be taken arbitrarily small; (iii) 05d
5D cos a
 1þ 1=ð2gÞ (see (16) and (10)); and (iv) m > 0 and tanðmpÞ
5d=ðD sin aÞ (see Lemma 2.3).

Let tanðmpÞ ! d=ðD sin aÞ; then

sinðmpÞ !
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 sin2 aþ d2
p ;

and denote

m0 ¼
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 sin2 aþ d2
p 2D cos a
 2þ

1

g

 2d

� �
ð1
 lÞ: ð26Þ

It is clear that by (24), for ImðwÞ50 and jwj sufficiently large, we
have

jgðwÞj4e
qpðcjwj
m0 Þ: ð27Þ

Since d can be any number satisfying 05d5b ¼ D cos a
 1þ 1=ð2gÞ;
letting

h0 ¼ max
05d5b

m0; ð28Þ

we see that in (27), if m0 is replaced by h0; the inequality still holds, i.e., for
ImðwÞ50 and jwj sufficiently large, we have

jgðwÞj4e
qpðcjwj
h0 Þ: ð29Þ
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We note that h0 ¼ hð1
 lÞ: Since l > 0 can be taken arbitrarily small, we
can choose l sufficiently small such that

1

h0
5

1

h
þ e0;

where e0 > 0 is from (17). By Conditions (17)–(19), we have

Z 1 pðrÞ
r1þ1=h0

dr ¼ þ1: ð30Þ

Now we prove that gðwÞ � 0 on ImðwÞ50: This in turn will imply that
GðsÞ � 0 on Qd

l; and thus the proof will be completed. Indeed, by (29),

Z 1 logjgðtÞj
t2

dt4
Z 1 
qpðcth

0
Þ

t2
dt

¼ 
q
Z 1 pðrÞ

ðrcÞ
2=h0

1

h0
r
c

� �1
h0
1 1

c

	 

dr

¼ 
C
Z 1 pðrÞ

r1þ1=h0
dr;

where C is a positive constant.
Thus, by (30),

Z 1 logjgðtÞj
t2

dt ¼ 
1;

hence,

Z 1 logjgðtÞj
1þ t2

dt ¼ 
1:

Similarly, we can get

Z

1

logjgðtÞj
t2

dt5
Z

1


qpðcjtjh
0
Þ

t2
dt ¼

Z 1 
qpðcth
0
Þ

t2
dt ¼ 
1;

where
R

1 means that the upper limit of the integral is a negative number

with sufficiently large magnitude. Hence

Z

1

logjgðtÞj
1þ t2

dt ¼ 
1:
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Thus, we have Z 1


1

logjgðtÞj
1þ t2

dt ¼ 
1;

and by Lemma 2.5 (Carleman’s theorem), gðwÞ � 0: ]

Remark 4. In (18), h is well defined. Indeed, let

A ¼ 2b ¼ 2D cos a
 2þ 1=g;

B ¼ D2 sin2 a

and

yðxÞ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 sin2 aþ x2
p ½2D cos a
 2þ 1=g
 2x
 ¼

xffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ x2

p ðA
 2xÞ:

Since 2gð1
 D cos aÞ51; A > 0; it is easy to verify that y0ð0Þ ¼ A=
ffiffiffi
B

p
> 0;

and y0ðA=2Þ ¼ 
ð2AÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4B

p
50: Hence, there exists an %xx 2 ð0;A=2Þ ¼

ð0; bÞ such that yð %xxÞ ¼ h:

4. CASE WITH WEIGHT

Assume that p0ðzÞ is a real-valued function satisfying p0ðzÞ5pðjzjÞ ¼ pðrÞ
for jzj ¼ r sufficiently large (say r5r0), where pðrÞ is defined by (1). In this
section, we consider the completeness of fzt1 ; zt2 ; . . .g in L2a½O
 with the
weight e
p0ðzÞ:

We say f ðzÞ 2 L2a½O;p0
; if f ðzÞ is analytic in O andZ Z
O
e
p0ðzÞjf ðzÞj2 dx dy5þ1:

In the space L2a½O;p0
; we define the inner product by

ðgðzÞ; f ðzÞÞ ¼
Z Z

O
e
p0ðzÞgðzÞf ðzÞ dx dy;

where f ðzÞ; gðzÞ 2 L2a½O;p0
:

Theorem 2. Under the conditions of Theorem 1, the sequence fzt1 ; zt2 ; . . .g
is complete in L2a½O;p0
:
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The proof is almost the same as that of Theorem 1. We only need to note
the following points:

In the estimate of the upper bound of jGðsÞj; we now have for s 2 Qd
g ;

GðsÞ ¼
Z Z

O0
e
p0ðexÞf ðexÞjexj2Iðs
 xÞ dx1 dx2;

and for ReðsÞ ¼ u > 0; s 2 Qd
g ;

jGðsÞj4Ctn1

R R
O e


p0ðzÞjf ðzÞjjzjtn dx dy

jesjtn sinðmpÞ

and Z Z
O
e
p0ðzÞjf ðzÞjjzjtn dx dy

¼
Z Z

O
e
1=2p0ðzÞjf ðzÞje
1=2p0ðzÞjzjtn dx dy

4C1

Z Z
O
e
p0ðzÞjzj2tn dx dy

� �1=2

4Ctn2

Z 1

r0

re
p0ðrÞr2tn dr
� �1=2

4Ctn2 sup
r50

ðre
1=2p0ðrÞ
� �1=2 Z 1

r0

e
1=2p0ðrÞr2tn dr
� �1=2

4Ctn3

Z 1

r0

e
1=2p0ðrÞr2tn dr
� �1=2

4Ctn3

Z 1

r0

e
1=2pðrÞr2tn dr
� �1=2

;

where C1;C2 and C3 are constants independent of tn and n: Then, as in the
proof of Theorem 1, we can prove that GðsÞ � 0 for s 2 Qd

g :
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