Journal of Approximation Theory 118, 1-19 (2002)
doi:10.1006/jath.2002.3693

On the Completeness of the System {z™} in L?

André Boivin', and Changzhong Zhu

Department of Mathematics, The University of Western Ontario, London,
Ontario, Canada N6A 5B7
E-mail : boivin@uwo.ca

Communicated by Manfred v. Golitschek
Received March 28, 2000; accepted April 1, 2002

Given an unbounded domain Q located outside an angle domain with vertex at the
origin, and a sequence of distinct complex numbers {t,} (n=1,2,...) satisfying
2 — D as n > oo with 0<D< o0, and |arg(t,)|<a<Z, we obtain a completeness

[tnl

theorem for the system {z™} (n=1,2,...) in Lﬁ[Q]. The case with weight is also
considered. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let Q be a domain in the complex z plane, and L2[Q] be the set of all
functions ¢ which are analytic in Q with

//Q|¢(z)|2do<oo, z=x+1iy,

where do is the area element in the z plane (i.e., do = dxdy = rdrd0 for
z=x+iy=re"). For ¢, € [2[Q], define the inner product

(6. 1) = / /Q $ETE) do,

and norm ||¢|| = (q&,qS)I/Z. With these, L2[Q] is a Hilbert space (see for
example [6, Chap. 1]).

For A, eLﬁ[Q] (n=1,2,...), we say that the system {%,} is complete in
12[Q] if for any g € L[],

lhrég llg — hll =0,

where S denotes the linear span in Lg[Q] of {h,}.
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FIG. 1. Dzhrbasian domain.

It is natural to try to characterize, for example, those bounded domains Q2
for which the polynomials are dense in L2[Q], that is to study the
completeness of the system {1,z,z%,...} in L2[Q]. This is a very delicate
topological and geometrical problem and a complete answer is known only
in special cases. This is in sharp contrast with the simple topological
characterization of domains obtained in the study of polynomial uniform
approximation. We refer the reader to [6] for a nice survey of these questions
(and many others).

In view of the Miintz—Szasz theorem (see [9, Chap. 15] or [3, Chap. 6.2]),
it is also natural to consider the completeness in L2[Q] of {z™} where {t,} is
a sequence of complex numbers (and in general 0 ¢ Q). When Q is bounded,
this problem seems to have been first studied by Carleman [2].

These questions have also been considered on special unbounded domains
by Dzhrbasian [4], Mergelyan [§8] and Shen [10,11]. We now proceed to
describe their results.

Let Q be an unbounded simply connected domain satisfying the following
conditions (we will call such a domain a Dzhrbasian domain (see Fig. 1)):

Condition Q(I). For »>0, let o(r) denote the linear measure of the

intersection of the circle |z| = » and Q. We suppose there exists ry > 0 such
that for r > ry,

a(r)<e ™,
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where p(r) > 0 satisfies

p) = pro)+ [ 2 (n

1o
with w(r) =0 and w(r) T co as r — o0.

Condition Q(II). It is assumed that the complement of Q consists of m
unbounded simply connected domains G; (i = 1,2,...,m), each containing
an angle domain 4; with opening 7, «; > %

Now let
9 = max{oy,..., 0}, (2)

where the o; are the constants appearing in Condition Q(II). Under the
above conditions on 2, Dzhrbasian proved that if

/Ocp(r)drz-i-oo

R

(where [ * means that the lower limit of the integral is sufficiently large),
then the polynomial system {1,z,z%, -} is complete in L2[Q].

Based on the results of Dzhrbasian, Shen [10] studied the completeness of
the system {z} in L2[Q], where {t,}, is a sequence of complex numbers
satisfying the following conditions:

the 7, are all distinct and lim |z,| = oo, (I
n—0o0
lim =D (0<D<), (I1)
n—=00 |Tn|
Re(z,) >0, IIm(z,)| < C, (111)

where C is a constant.

Shen also assumed that Q is a Dzhrbasian domain, but added the
requirement that the vertex of A; is at the origin (hence that Q does not
contain 0 (see Fig. 2). Shen proved that if

201(1 — D)<1,
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and for some ¢,
> p(r)
/ rl—+ﬂdl" = 00,
where
max | 9 1 + (3)
= ——+t¢
n ) % ~2(1-D) 0 |>

then the system {z"}>°, is complete in L2[Q].

It follows from Condition (III) that arg(z,) — 0 as n — oo. In this paper, we
will relax this condition, allowing Im(z,) — 0o as n — co. Our definition of 5
will reduce to Shen’s definition (3) when the 7, will lie in a strip. More precisely,
we assume that {t,} satisfies Conditions (I) and (II), and the condition

|mg%n<a<g (IlIa)

rather than (III).
We also assume that Q is a Dzhrbasian domain, with the added
requirement that 4, is the angle domain

A = {z: larg(z) — n|<l}, “4)
2y

o e
where y is a constant satisfying y > 5.
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Some results of Shen obtained in [11], in particular, the residue estimate
on the expansion of generalized Dirichlet polynomials (see Lemmas 2.1, 2.2
and 2.3 below), will play a very important role in this paper.

We end this section with some very elementary facts which we will need
later.

LemMmA 1.1 (see, for example, Gaier [6, Chap. 1]). A necessary and
sufficient condition for the system {h,} to be complete in L>[Q] is that: for any
£ e[, if (f,hy) =0 for all h,, then f(z) = 0.

LeEmMA 1.2.  Under our assumptions on t, and 2, we have
M el)[Q, n=12,....

Remark 1. Of course, if 7, is a non—negative integer, z™ is an entire
function. But in general, to define z* = exp(t, log z), we need to fix a branch
of the logarithm. For example, we can always choose the principal branch of
log z (which we will denote by Log z) since it is well defined on Q (recall that
Q is located outside A; (see Fig. 2)).

Proof of Lemma 1.2. Let z = re', 1, = |1,]e”, then it is easy to see that

|ZT”| — rlrnlcos 0ne*|‘5n\0 sin 0,
Since [0,] <x <%, and when z e Q, [0]<m — n/(2y), it follows that there is a
constant ¢ > 0 such that for z € Q,

|z < (cr)‘f”l.

Thus, by the assumptions on Q, for fixed n =1,2,...,

ro o0
/ / 2 dx dy < / 2nr(er)?™ dr + / a(r)(cr)™™ dr
Q 0 70

leal+2
27102""‘1’0'7 H

o0
T L ol / e P20 g < oo
T 20l +2 "o
Here we used Condition Q(I). Indeed, since » is fixed and w(r) T oo as r —
00, we have w(r) > 2|t,| + 2 for r sufficiently large, say » > r;. Without loss of
generality, we can assume that r| > ry. Thus, by (1), we have for r > r,

() > / O 4> @pl +2) /r%dt

t
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and

r df 7\ @l 22
=725 <exp | — (2, + 2) / atl ol _ (1 Pl =
P 7 r

hence,

o0
/ e P2l gy <00, 1

ro

Remark 2. A similar argument shows that under our assumptions on £,

[ [ dr<x.

2. SOME LEMMAS

Consider the functions
00 72
0 =]] (1 - —2> (5)
k=1 Tk

and

1 [e'¢] e—isy
()=— | £ 4 —u+iv. 6
© 2n/,oo Ty ST ©

For sufficiently small § > 0, let
S5 = {s =u+iv: [v|<nDcosa — omn}. (7

Under Conditions (I), (I) and (Illa), by [11, Sect. 1], we have

LeEmMA 2.1.  Given ¢ >0,

1
' < C(S)e(_nD cos a+e)|y|’
i

where C(g) is a constant which depends only on e.

LEMMA 2.2.  The integral in (6) is convergent uniformly and absolutely in
Ss, hence the function I(s) is analytic and bounded in Ss for any sufficiently
small positive number 9.
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LEMMA 2.3. There exists a sequence {t,} with n=t,=(1 —)n (1 is a
sufficiently small positive number) such that for s = u + iv € Ss,

®)

—T%S ty ,—uty Sin(um) —u>
I(s) — Z e < Cre , Re(s) = u=0,
T'(ti) Clre™hn, Re(s) = u<0,

[Tl <ty

where C is a constant independent of s and t,, while p is a small positive
number satisfying

tan(um) <

©)

Dsinoa’

We will now transform the domain Q of the z plane into a strip of the &
plane:

Let z=¢%, &=¢, +i& (or equivalently, ¢ = Logz). Suppose that the
image of Q in the ¢ plane is Q'. By Condition Q(II), since Q is located outside
the angle domain defined by (4), it is clear that Q' must be located inside the

strip
0 = {5 =& + iy |§2|<7T(1 —2i>}
Y

Now we introduce two strips:

1
0, = {s:u—f—iv: |v|<nDcosoc—n(1 _2_y> },

: 1
Qi: {s:u+iv: |v|<nDcosoc—5n—n(1 _2_y>}

We assume now that
29(1 = Dcosa)<1,
thus wDcos o — (1 — %) > (), and we take ¢ so small that

1
0<5<Dcoscx—1—|—2—y, (10)

and thus,

nDcosoc—én—n(l—21>>O. (11)

2

It is not hard to see then that if s € Qf and ¢ e ' (hence ¢ € Q'), we must
have |[Im(s — &)|<mD cos o — I, i.e., s — & € S5. Hence, for any f(z) € Lg[Q],
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we can define a function G(s) for s € Q‘/> by

60 = [ [ FNePis - odtide  i=dvi ()

By Lemma 2.2, when & e @ is fixed, I(s — &) hence f(ef)e‘]I(s — &) is
analytic for s € Qf when s € Q‘S is fixed, f(ef)le‘*I(s — &) is measurable for
EeQ;and I(s — &) is bounded for s e Q‘S & e Q. Thus, it is not hard to
prove using Remark 1.2 that G(s) is analytlc in Q(’ (hence analytic in Q, since
0 can be arbitrarily small) and bounded in Q‘S (see for example, [9, Chap. 10,
Exercise 16; 1, Sect. 3]).

Now we prove an important lemma:

LemMaA 2.4, Iffor s € Qf, G(s) = 0 where G(s) is defined by (12), then
//f@fdz:(), n=0,1,2,... . (13)
Q

Proof. Since s — ¢ € S5 when s € Qb Ee @, it follows from Lemma 2.2
that for s € 09, the integral

J 1 [ g ils é)yd
6-0= 5] Ty

converges uniformly and absolutely with respect to & = ¢, +i& e .
Hence, we can interchange the order of integrations in (12):

661= [ [/ | 7@ere l}fdfldéz} dy=0, seQ. (4)

2n T(iy)

Let

1 - L
10) =7 | | TP az aza

It can be proved that [(y) e L?>(—00,00). Indeed, there exist & >0, C >0
such that for y € (—00, 00),

max |¢”°|

ion<| [ [ @t ag s ma

_mDc¢ : n 177' |
< Ce( nD cos x+e)|y|e ( 2y V
< Ce— 81

Here we used: (i) f(z) € L2[©2]; and (ii) Lemma 2.1 and the fact that 7D cos
o — (1 — 1/(2y)) > 0 to produce the constant C > 0 and ¢; > 0, respectively.
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Thus, by Plancherel theorem (see [9, Theorem 9.13]) and (14), we have
> 2
| uorar=o.
—00
and for y € (—00,00), I(y) =0, i.e.,
[ | @ere e ae, ~o. (15)
Ql

since /(y) is continuous in (—00, 00).
Consider the integral

o= [ [ Feetesaz i = [ [ @y

We claim that H(w) is analytic in Re(w) > —%, Indeed, for any R > 0, when

/ /Q 7@2" | dx dy

= [ [ P ac e
= [ [ et mens g, ag,
;

<=1/ / / £ (e)le et d&y dé
Q/

<elin(ll/zw[// o F(e)le“Ple[* dé, d&,

le€]>1

] |@||eﬁ|2|ei|”2déld52]

lefl<1

<efr-1/2) / / P PIER + 16121 dé, de
Q/

— 1172 / /Q FOME + 12/ de dy

L 12 1/2
<eR“<“/2”">[ / / If(z)lzdxdy} [ / /Q [l + 2P dedy|
Q



10 BOIVIN AND ZHU

By using the same argument as in the proof of Lemma 1.2, we can get

//|z|2Rdxdy<oo,
Q
//|Z|R_l/2dxdy<oo,
Q
//|z|’1dxdy<oo.
Q

Thus, for —%sRe(w)gR, Im(w)| <R,

[ [ @y

and by using similar arguments to that in [1, Sect. 3], we can prove, using
Remark 1.2, that H(w) is analytic in —%< Re(w) <R, [Im(w)|<R. Since R
can be arbitrarily large, therefore H(w) is analytic in Re(w) > —%.

By (15), for y e (—o00,00),H(iy) =0. This implies that H(w) =0 for
Re(w) > —1. In particular, H(n) = 0,n =0,1,2,..., i.e.,

//mz”dxdyzo, n=0,1,2,... . 1
Q

In order to prove our main theorem in Section 3, we need also the
following two results:

LeEMwmA 2.5 (Carleman’s Theorem (see Levin [7, p. 105])). If g(w) is
analytic and bounded in the half-plane Im(w) >0, and

')Ql -
[ o oy,
o Lt

then g(w) = 0.

LEMMA 2.6 (M.M. Dzhrbasian (see Mergelyan [8, Sect. 10, Lemma
11)). Let p(r) be given as in Condition Q(1), let

m:/ﬂMamww
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and

&(r) = sup

1
n=1 \/Mzn.

Then there exists qo > 0 such that for r sufficiently large,
log @(r) = qo p(r).
3. A COMPLETENESS THEOREM
Now we give the main result of this paper:
THEOREM 1. Assume that the domain Q and the sequence {t,} satisfy

Conditions Q(I), Q(I), (1), (II),(Il1a) and (4) given in Section 1. Moreover,
assume

2y(1 = Dcosa)< 1. (16)
Let
1
nmax{S,ZJrso}, (17)
where § is defined in (2), g is some positive number, and
x 1
h = max —[2Dcosoc2+——2x} (18)
with b =Dcoso — 1 + .
I
00
pr)

then the system {z*,z%2,2%,...} is complete in L}[Q].

Remark 3. Letting o — 0 in (18), we recover Shen’s original condition

(see (3)).

Proof of Theorem 1. By Lemma 1.1, we only need to prove that if f €
L2[Q], and

(f@@),z")=0, n=123,...,

then f(z) = 0. So, we assume that (f(z),z")=0,=1,2,3,... .
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Recalling the definition of G(s) (see (12)), we first note that we only need
to prove that G(s) =0 for s Q). Indeed if so, by Lemma 2.4, we will
have

(f(2),2") =0, n=0,1,2,..., (20)

and using M. Dzhrbasian’s result, assuming that

/DO PO e oo, Q1)

rlto

the system {z"} (n=0,1,2,...) is complete in L2[Q]. It follows easily from
the conditions of our theorem that (21) is satisfied. Thus, by Lemma 1.1 and
(20), we will have f(z) =0 for ze Q.

Now we prove that for s € Qf , G(s) = 0. We will use Lemma 2.3. Let ¢, be
defined as in Lemma 2.3, i.e., n>t, > (1 — A)n (where 4 is a sufficiently small
positive number).

By (12), for s € 09,

B e,rk(s,*)
60 = [ [ 7t [I(S—é)— > | drde
okl <t
- e~ T(s=9)
[ | @ Y

[Tl <ty

=:G1,,(s) + G, (5).
Since (f(z),z") =0, n=1,2,3,..., we have
| | T@resazag 0. n=1.25...
Ql

Thus,

e s — < T
Gu)= Y g | /Q T@ePe de dey = 0.

[tel <t

Hence, for s € ij,, G(s) = Gy, (s).
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By Lemma 2.3, fors=u+ive fo,,
IG(9)l =G, (5)]

e [ e P de dey

Re(s—&)>0
—ut,
+e / / o

Re(s—&)<0

<C"

£ (ellePle[" déy dfz] ,
where C (and C, C, below) are constants independent of n and s.
Hence, for Re(s) = u >0, s e 0,

[f @Il dx dy N J Sl /@il dxdy}

les |tn sin(um) | es|tn

IG(s)| <C" {f Jo
[ Jo /@Il dedy

|tn sin(um)

<cpldol/
les

By Schwarz’s inequality,

f Jo Lf @I dx dyl' L[ Jo le™ dx dy]' 7

|tn sin(um)

|G(s)| < CY .
le*

Note that

Yo o0
/ / |2 dx dy < / 2 dr + / " a(r) dr
Q 0 "o

o0
2t,+2 2t, — p(r)
<—r +/ e P dr
~

2, 427" "

o0
Sctl”—l—ctz”/ e PO gy

ro

o0
< Cg, / 72t o= P(r) dr,

Fo

where c|—c3 are positive constants independent of n and s.
Thus, since f e L2[Q], we have

[ 00,21, o= p(r) dr]l/z [ 00 ,.2n = p(r) dr]l/2

t,“Jro n-Jro
|G(S)| < C2 S C2 |eS|(] —A)n sin(un)

|es|tnsiﬂ(wr)

where in the last step, we used the conditions Re(s) =u >0 and n>t,>
(1= Mn.
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Since the above inequality holds for all n=1,2,3,..., we have for
Re(s)=u>0, se Qf/’,

foo 2o p(r)dr 1/2

< i n 0
|G(s)| < rllgf; G le c|(1 Jyn sin(ur)

Now using Lemma 2.6, for
o0
M, = / e PO gy
ro

and

sup ,
n=1 \/Mzn

where 7 = c|ef| ' ~?*"0™ with ¢ a constant independent of s and n, then there
exists a constant ¢ > 0 such that for Re(s) sufficiently large (i.e., 7 sufficiently
large),

~

B(F) =

1 <e —qp(P)

()
Hence, for s € Qf and Re(s) > 0 sufficiently large, we have

1) singir)

|G<s)|<%<ew<clew o)

We know that G(s) is analytic in O, and bounded in Q‘) In order to use
Lemma 2.5 (Carleman’s theorem), we transform Q() (with respect to s) into
the upper half-plane Im(w)>0:

(1) First, let w; = ¢*. Then Qf. is transformed into an angle domain
larg(w;)| < =i, where by (11),

I:Dcosoc—571+2i>0. (23)
Y

(ii) Let wp = wl/ @) The above angle domain is then transformed into the
right half-plane Re(w,)>0.

(ii1) Finally, let w = iw,. The right half-plane is then transformed into the
upper half-plane Im(w) > 0.

Now, we have

S 21 = N2 21
e’ = fwi] = w3’ = [(=iw)™| = [w™|
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and
G(s) = G(log wy) = G(log w3') = G(log (—iw)*).

Let g(w) = G(log (—iw)*). Clearly, g(w) is analytic and bounded in the half-
plane Im(w)>0. By (22), for Im(w) >0 and |w| sufficiently large, we have

lgm)] e amen I _ g, (24)

where ¢,g>0 are constants independent of w, [/ is given by (23),
and

1
m = 2I(1 — ) sin(un) = sin(ux) 2D coso — 2 + ; =20|(1=4). (295

Recall that in (25): (i) D, o and y are fixed since they are determined by
{t,} and Q, respectively; (ii) 4> 0 can be taken arbitrarily small; (iii) 0 <
<Dcosa—1+1/(2y) (see (16) and (10)); and (iv) >0 and tan(un)
<d/(Dsin a) (see Lemma 2.3).

Let tan(un) — /(D sin o), then

0

sin(un) - —F————,
/D2 sin® o + &7

and denote

w——— % |opcosu—2+t—2s (1-2). (26)
7

/D2 sin? o + &°

It is clear that by (24), for Im(w)>0 and |w| sufficiently large, we
have

lg(w)| < e~ pem™), (27)

Since 0 can be any number satisfying 0<d<b=Dcosa— 1+ 1/(2y),
letting

H = max ', (28)
0<o<b

we see that in (27), if m’ is replaced by /', the inequality still holds, i.e., for
Im(w) >0 and |w| sufficiently large, we have

lg(w)| < et (29)
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We note that 4’ = A(1 — A). Since A > 0 can be taken arbitrarily small, we
can choose / sufficiently small such that

1<1+8
W h 05

where g > 0 is from (17). By Conditions (17)—(19), we have

p(r)
/ Wy dr = +00. (30)

Now we prove that g(w) =0 on Im(w)>0. This in turn will imply that
G(s) =0 on Qﬁ, and thus the proof will be completed. Indeed, by (29),

00 00 V4
/ loglg(#)l g < / gplct™) dt

2 2

o 0T ()

:—c/m POy

ey

where C is a positive constant.
Thus, by (30),

*1
/ oglyl 4 _ .

[

hence,

o0
/ loglg(t)ldt: o
1+¢7

Similarly, we can get

1 —gplel” ¥ —gp(et”
/ og|g(r)|dt</ Mdi:/ G PN
B S & ’2

where Loo means that the upper limit of the integral is a negative number
with sufficiently large magnitude. Hence

/ loglg(t)ldt: o
oo L2
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Thus, we have

~1
/ Oglg(t)ldt: .,
oo 142

and by Lemma 2.5 (Carleman’s theorem), g(w) =0. 1
Remark 4. 1In (18), & is well defined. Indeed, let

A=2b=2Dcoso—2+1/y,

B = D?sin’ a
and

[2Dcoso— 2+ 1/y — 2x] = —— (4 — 2x),
X

X
yx) = —vnr- —_—
VD2 sin o + VB +
Since 2y(1 — Dcosa)<1, 4 >0, it is easy to verify that y'(0) = A/\/E >0,

and y/(4/2) = —(24)/+/A* + 4B<0. Hence, there exists an x € (0,4/2) =
(0,b) such that y(x) = h.

4. CASE WITH WEIGHT
Assume that py(z) is a real-valued function satisfying py(z) = p(|z]) = p(r)
for |z| = r sufficiently large (say »>ry), where p(r) is defined by (1). In this
section, we consider the completeness of {z'',z,...} in Lﬁ[Q] with the

weight e 7@,
We say f(z) € L2[Q, po), if f(z) is analytic in  and

/ / e MO )P dedy< + 0.

Q

In the space L2[Q, po], we define the inner product by
WL f@) = [ [ erOgerredsdy

where f(z),g(z) € Li[Q, ol

THEOREM 2. Under the conditions of Theorem 1, the sequence {z*',z%, ...}
is complete in L[Q, po].
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The proof is almost the same as that of Theorem 1. We only need to note
the following points: )
In the estimate of the upper bound of |G(s)|, we now have for s € Qf;,

66 = [ [ &7

and for Re(s) =u>0, se Qf;,

e“PI(s — &) dé, d&,

J Jo e PO f @)l d dy

|es |t,, sin(;m)

IG(s)| < CY

and

//efpt)(z”f(z)nzlt,,dxdy
Q
_ / /Q 12RO Fle 2RO g dy

1/2
<C [ / / em<2>|z|2fndxdy]
Q
00 1/2

/
<C§" / re” P02 dr}
ro

r 1/2 00 1/2
< C;" Sup (1”67 l/an(r):| |:/ 671/2[70(”)},2[" dr:|
L =0 0

00 1/2
31

00 1/2
< C;n / e~ 1/2p(n) 2, d,,} ,
4]

where C;, C, and Cj are constants independent of ¢, and n. Then, as in the
proof of Theorem 1, we can prove that G(s) = 0 for s € Qf
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