On the Completeness of the System $\left\{z^{\tau_{n}}\right\}$ in L^{2}

André Boivin ${ }^{1,2}$, and Changzhong Zhu
Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7 E-mail : boivin@uwo.ca
Communicated by Manfred v. Golitschek
Received March 28, 2000; accepted April 1, 2002

Given an unbounded domain Ω located outside an angle domain with vertex at the origin, and a sequence of distinct complex numbers $\left\{\tau_{n}\right\}(n=1,2, \ldots)$ satisfying $\frac{n}{\left|\tau_{n}\right|} \rightarrow D$ as $n \rightarrow \infty$ with $0<D<\infty$, and $\left|\arg \left(\tau_{n}\right)\right|<\alpha<\frac{\pi}{2}$, we obtain a completeness theorem for the system $\left\{z^{\tau_{n}}\right\}(n=1,2, \ldots)$ in $L_{a}^{2}[\Omega]$. The case with weight is also considered. © 2002 Elsevier Science (USA)

Key Words: mean square approximation; complex Müntz theorem; unbounded domain.

1. INTRODUCTION

Let Ω be a domain in the complex z plane, and $L_{a}^{2}[\Omega]$ be the set of all functions ϕ which are analytic in Ω with

$$
\iint_{\Omega}|\phi(z)|^{2} d \sigma<\infty, \quad z=x+i y
$$

where $d \sigma$ is the area element in the z plane (i.e., $d \sigma=d x d y=r d r d \theta$ for $\left.z=x+i y=r e^{i \theta}\right)$. For $\phi, \psi \in L_{a}^{2}[\Omega]$, define the inner product

$$
(\phi, \psi)=\iint_{\Omega} \phi(z) \overline{\psi(z)} d \sigma
$$

and norm $\|\phi\|=(\phi, \phi)^{1 / 2}$. With these, $L_{a}^{2}[\Omega]$ is a Hilbert space (see for example [6, Chap. 1]).

For $h_{n} \in L_{a}^{2}[\Omega](n=1,2, \ldots)$, we say that the system $\left\{h_{n}\right\}$ is complete in $L_{a}^{2}[\Omega]$ if for any $g \in L_{a}^{2}[\Omega]$,

$$
\inf _{h \in S}\|g-h\|=0
$$

where S denotes the linear span in $L_{a}^{2}[\Omega]$ of $\left\{h_{n}\right\}$.
${ }^{1}$ Research of this author is partially supported by a grant from NSERC of Canada.
${ }^{2}$ To whom correspondence should be addressed.

FIG. 1. Dzhrbasian domain.

It is natural to try to characterize, for example, those bounded domains Ω for which the polynomials are dense in $L_{a}^{2}[\Omega]$, that is to study the completeness of the system $\left\{1, z, z^{2}, \ldots\right\}$ in $L_{a}^{2}[\Omega]$. This is a very delicate topological and geometrical problem and a complete answer is known only in special cases. This is in sharp contrast with the simple topological characterization of domains obtained in the study of polynomial uniform approximation. We refer the reader to [6] for a nice survey of these questions (and many others).

In view of the Müntz-Szász theorem (see [9, Chap. 15] or [3, Chap. 6.2]), it is also natural to consider the completeness in $L_{a}^{2}[\Omega]$ of $\left\{z^{\tau_{n}}\right\}$ where $\left\{\tau_{n}\right\}$ is a sequence of complex numbers (and in general $0 \notin \Omega$). When Ω is bounded, this problem seems to have been first studied by Carleman [2].

These questions have also been considered on special unbounded domains by Dzhrbasian [4], Mergelyan [8] and Shen [10, 11]. We now proceed to describe their results.

Let Ω be an unbounded simply connected domain satisfying the following conditions (we will call such a domain a Dzhrbasian domain (see Fig. 1)):

Condition $\Omega(\mathrm{I})$. For $r>0$, let $\sigma(r)$ denote the linear measure of the intersection of the circle $|z|=r$ and Ω. We suppose there exists $r_{0}>0$ such that for $r>r_{0}$,

$$
\sigma(r) \leqslant e^{-p(r)}
$$

where $p(r)>0$ satisfies

$$
\begin{equation*}
p(r)=p\left(r_{0}\right)+\int_{r_{0}}^{r} \frac{\omega(t)}{t} d t \tag{1}
\end{equation*}
$$

with $\omega(r) \geqslant 0$ and $\omega(r) \uparrow \infty$ as $r \rightarrow \infty$.
Condition $\Omega(\mathrm{II})$. It is assumed that the complement of Ω consists of m unbounded simply connected domains $G_{i}(i=1,2, \ldots, m)$, each containing an angle domain Δ_{i} with opening $\frac{\pi}{\alpha_{i}}, \alpha_{i}>\frac{1}{2}$.

Now let

$$
\begin{equation*}
\vartheta=\max \left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \tag{2}
\end{equation*}
$$

where the α_{j} are the constants appearing in Condition $\Omega($ II $)$. Under the above conditions on Ω, Dzhrbasian proved that if

$$
\int^{\infty} \frac{p(r)}{r^{1+\vartheta}} d r=+\infty
$$

(where \int^{∞} means that the lower limit of the integral is sufficiently large), then the polynomial system $\left\{1, z, z^{2}, \cdots\right\}$ is complete in $L_{a}^{2}[\Omega]$.

Based on the results of Dzhrbasian, Shen [10] studied the completeness of the system $\left\{z^{\tau_{n}}\right\}$ in $L_{a}^{2}[\Omega]$, where $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ is a sequence of complex numbers satisfying the following conditions:

$$
\begin{equation*}
\text { the } \tau_{n} \text { are all distinct and } \lim _{n \rightarrow \infty}\left|\tau_{n}\right|=\infty \tag{I}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{n}{\left|\tau_{n}\right|}=D \quad(0<D<\infty), \tag{II}\\
& \operatorname{Re}\left(\tau_{n}\right)>0, \quad\left|\operatorname{Im}\left(\tau_{n}\right)\right|<C, \tag{III}
\end{align*}
$$

where C is a constant.
Shen also assumed that Ω is a Dzhrbasian domain, but added the requirement that the vertex of Δ_{1} is at the origin (hence that Ω does not contain 0 (see Fig. 2). Shen proved that if

$$
2 \alpha_{1}(1-D)<1
$$

FIG. 2. Domain Ω.
and for some ε_{0},

$$
\int^{\infty} \frac{p(r)}{r^{1+\eta}} d r=\infty,
$$

where

$$
\begin{equation*}
\eta=\max \left(\vartheta, \frac{1}{\frac{1}{\alpha_{1}}-2(1-D)}+\varepsilon_{0}\right), \tag{3}
\end{equation*}
$$

then the system $\left\{z^{\tau_{n}}\right\}_{n=1}^{\infty}$ is complete in $L_{a}^{2}[\Omega]$.
It follows from Condition (III) that $\arg \left(\tau_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. In this paper, we will relax this condition, allowing $\operatorname{Im}\left(\tau_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Our definition of η will reduce to Shen's definition (3) when the τ_{n} will lie in a strip. More precisely, we assume that $\left\{\tau_{n}\right\}$ satisfies Conditions (I) and (II), and the condition

$$
\begin{equation*}
\left|\arg \left(\tau_{n}\right)\right|<\alpha<\frac{\pi}{2} \tag{IIII}
\end{equation*}
$$

rather than (III).
We also assume that Ω is a Dzhrbasian domain, with the added requirement that Δ_{1} is the angle domain

$$
\begin{equation*}
\Delta_{1}=\left\{z:|\arg (z)-\pi|<\frac{\pi}{2 \gamma}\right\}, \tag{4}
\end{equation*}
$$

where γ is a constant satisfying $\gamma>\frac{1}{2}$.

Some results of Shen obtained in [11], in particular, the residue estimate on the expansion of generalized Dirichlet polynomials (see Lemmas 2.1, 2.2 and 2.3 below), will play a very important role in this paper.

We end this section with some very elementary facts which we will need later.

Lemma 1.1 (see, for example, Gaier [6, Chap. 1]). A necessary and sufficient condition for the system $\left\{h_{n}\right\}$ to be complete in $L_{a}^{2}[\Omega]$ is that: for any $f \in L_{a}^{2}[\Omega]$, if $\left(f, h_{n}\right)=0$ for all h_{n}, then $f(z) \equiv 0$.

Lemma 1.2. Under our assumptions on τ_{n} and Ω, we have

$$
z^{\tau_{n}} \in L_{a}^{2}[\Omega], \quad n=1,2, \ldots .
$$

Remark 1. Of course, if τ_{n} is a non-negative integer, $z^{\tau_{n}}$ is an entire function. But in general, to define $z^{\tau_{n}}=\exp \left(\tau_{n} \log z\right)$, we need to fix a branch of the logarithm. For example, we can always choose the principal branch of $\log z$ (which we will denote by $\log z$) since it is well defined on Ω (recall that Ω is located outside Δ_{1} (see Fig. 2)).

Proof of Lemma 1.2. Let $z=r e^{i \theta}, \tau_{n}=\left|\tau_{n}\right| e^{i \theta_{n}}$, then it is easy to see that

$$
\left|z^{\tau_{n}}\right|=r^{\left|\tau_{n}\right| \cos \theta_{n}} e^{-\left|\tau_{n}\right| \theta \sin \theta_{n}} .
$$

Since $\left|\theta_{n}\right|<\alpha<\frac{\pi}{2}$, and when $z \in \Omega,|\theta|<\pi-\pi /(2 \gamma)$, it follows that there is a constant $c>0$ such that for $z \in \Omega$,

$$
\left|z^{\tau_{n}}\right|<(c r)^{\left|\tau_{n}\right|} .
$$

Thus, by the assumptions on Ω, for fixed $n=1,2, \ldots$,

$$
\begin{aligned}
\iint_{\Omega}\left|z^{\tau_{n}}\right|^{2} d x d y & \leqslant \int_{0}^{r_{0}} 2 \pi r(c r)^{2\left|\tau_{n}\right|} d r+\int_{r_{0}}^{\infty} \sigma(r)(c r)^{2\left|\tau_{n}\right|} d r \\
& \leqslant \frac{2 \pi c^{2\left|\tau_{n}\right|} \mid r_{0}^{2\left|\tau_{n}\right|+2}}{2\left|\tau_{n}\right|+2}+c^{2\left|\tau_{n}\right|} \int_{r_{0}}^{\infty} e^{-p\left(r\left|r^{2\left|\tau_{n}\right|}\right| r<\infty\right.} d r .
\end{aligned}
$$

Here we used Condition $\Omega(\mathrm{I})$. Indeed, since n is fixed and $\omega(r) \uparrow \infty$ as $r \rightarrow$ ∞, we have $\omega(r)>2\left|\tau_{n}\right|+2$ for r sufficiently large, say $r>r_{1}$. Without loss of generality, we can assume that $r_{1}>r_{0}$. Thus, by (1), we have for $r>r_{1}$,

$$
p(r)>\int_{r_{1}}^{r} \frac{\omega(t)}{t} d t>\left(2\left|\tau_{n}\right|+2\right) \int_{r_{1}}^{r} \frac{1}{t} d t
$$

and

$$
e^{-p(r)} r^{2\left|\tau_{n}\right|}<\exp \left[-\left(2\left|\tau_{n}\right|+2\right) \int_{r_{1}}^{r} \frac{d t}{t}\right] r^{2\left|\tau_{n}\right|}=\left(\frac{r}{r_{1}}\right)^{-\left(2\left|\tau_{n}\right|+2\right)} r^{2\left|\tau_{n}\right|}=\frac{r_{1}^{2\left|\tau_{n}\right|+2}}{r^{2}}
$$

hence,

$$
\int_{r_{0}}^{\infty} e^{-p(r)} r^{2\left|\tau_{n}\right|} d r<\infty
$$

Remark 2. A similar argument shows that under our assumptions on Ω,

$$
\iint_{\Omega} d \sigma<\infty
$$

2. SOME LEMMAS

Consider the functions

$$
\begin{equation*}
T(z)=\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{\tau_{k}^{2}}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
I(s)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i s y}}{T(i y)} d y, \quad s=u+i v \tag{6}
\end{equation*}
$$

For sufficiently small $\delta>0$, let

$$
\begin{equation*}
S_{\delta}=\{s=u+i v:|v| \leqslant \pi D \cos \alpha-\delta \pi\} \tag{7}
\end{equation*}
$$

Under Conditions (I), (II) and (IIIa), by [11, Sect. 1], we have
Lemma 2.1. Given $\varepsilon>0$,

$$
\left|\frac{1}{T(i y)}\right| \leqslant C(\varepsilon) e^{(-\pi D \cos \alpha+\varepsilon)|y|},
$$

where $C(\varepsilon)$ is a constant which depends only on ε.
Lemma 2.2. The integral in (6) is convergent uniformly and absolutely in S_{δ}, hence the function $I(s)$ is analytic and bounded in S_{δ} for any sufficiently small positive number δ.

Lemma 2.3. There exists a sequence $\left\{t_{n}\right\}$ with $n \geqslant t_{n} \geqslant(1-\lambda) n$ (λ is a sufficiently small positive number) such that for $s=u+i v \in S_{\delta}$,

$$
\left|I(s)-\sum_{\left|\tau_{k}\right|<t_{n}} \frac{e^{-\tau_{k} s}}{T^{\prime}\left(\tau_{k}\right)}\right| \leqslant \begin{cases}C^{t_{n}} e^{-u t_{n} \sin (\mu \pi)}, & \operatorname{Re}(s)=u \geqslant 0, \tag{8}\\ C^{t_{n}} e^{-u t_{n}}, & \operatorname{Re}(s)=u \leqslant 0,\end{cases}
$$

where C is a constant independent of s and t_{n}, while μ is a small positive number satisfying

$$
\begin{equation*}
\tan (\mu \pi)<\frac{\delta}{D \sin \alpha} . \tag{9}
\end{equation*}
$$

We will now transform the domain Ω of the z plane into a strip of the ξ plane:

Let $z=e^{\xi}, \xi=\xi_{1}+i \xi_{2}$ (or equivalently, $\xi=\log z$). Suppose that the image of Ω in the ξ plane is Ω^{\prime}. By Condition $\Omega(I I)$, since Ω is located outside the angle domain defined by (4), it is clear that Ω^{\prime} must be located inside the strip

$$
Q^{\prime}=\left\{\xi=\xi_{1}+i \xi_{2}:\left|\xi_{2}\right|<\pi\left(1-\frac{1}{2 \gamma}\right)\right\} .
$$

Now we introduce two strips:

$$
\begin{gathered}
Q_{\gamma}=\left\{s=u+i v:|v|<\pi D \cos \alpha-\pi\left(1-\frac{1}{2 \gamma}\right)\right\}, \\
Q_{\gamma}^{\delta}=\left\{s=u+i v:|v| \leqslant \pi D \cos \alpha-\delta \pi-\pi\left(1-\frac{1}{2 \gamma}\right)\right\} .
\end{gathered}
$$

We assume now that

$$
2 \gamma(1-D \cos \alpha)<1,
$$

thus $\pi D \cos \alpha-\pi\left(1-\frac{1}{2 \gamma}\right)>0$, and we take δ so small that

$$
\begin{equation*}
0<\delta<D \cos \alpha-1+\frac{1}{2 \gamma}, \tag{10}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
\pi D \cos \alpha-\delta \pi-\pi\left(1-\frac{1}{2 \gamma}\right)>0 \tag{11}
\end{equation*}
$$

It is not hard to see then that if $s \in Q_{\gamma}^{\delta}$ and $\xi \in \Omega^{\prime}$ (hence $\xi \in Q^{\prime}$), we must have $|\operatorname{Im}(s-\xi)|<\pi D \cos \alpha-\delta \pi$, i.e., $s-\xi \in S_{\delta}$. Hence, for any $f(z) \in L_{a}^{2}[\Omega]$,
we can define a function $G(s)$ for $s \in Q_{\gamma}^{\delta}$ by

$$
\begin{equation*}
G(s)=\iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} I(s-\xi) d \xi_{1} d \xi_{2}, \quad \xi=\xi_{1}+i \xi_{2} \tag{12}
\end{equation*}
$$

By Lemma 2.2, when $\xi \in \Omega^{\prime}$ is fixed, $I(s-\xi)$ hence $\overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} I(s-\xi)$ is analytic for $s \in Q_{\gamma}^{\delta}$; when $s \in Q_{\gamma}^{\delta}$ is fixed, $\overline{f\left(e^{\xi}\right) \mid}\left|e^{\xi}\right|^{2} I(s-\xi)$ is measurable for $\xi \in \Omega^{\prime}$; and $I(s-\xi)$ is bounded for $s \in Q_{\gamma}^{\delta}, \xi \in \Omega^{\prime}$. Thus, it is not hard to prove using Remark 1.2 that $G(s)$ is analytic in Q_{γ}^{δ} (hence analytic in Q_{γ} since δ can be arbitrarily small) and bounded in Q_{γ}^{δ} (see, for example, [9, Chap. 10, Exercise 16; 1, Sect. 3]).

Now we prove an important lemma:
Lemma 2.4. If for $s \in Q_{\gamma}^{\delta}, G(s) \equiv 0$ where $G(s)$ is defined by (12), then

$$
\begin{equation*}
\iint_{\Omega} \overline{f(z)} z^{n} d z=0, \quad n=0,1,2, \ldots \tag{13}
\end{equation*}
$$

Proof. Since $s-\xi \in S_{\delta}$ when $s \in Q_{\gamma}^{\delta}, \xi \in \Omega^{\prime}$, it follows from Lemma 2.2 that for $s \in Q_{\gamma}^{\delta}$, the integral

$$
I(s-\xi)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i(s-\xi) y}}{T(i y)} d y
$$

converges uniformly and absolutely with respect to $\xi=\xi_{1}+i \xi_{2} \in \Omega^{\prime}$. Hence, we can interchange the order of integrations in (12):
$G(s)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i s y}}{T(i y)}\left[\iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} e^{i y \xi} d \xi_{1} d \xi_{2}\right] d y \equiv 0, \quad s \in Q_{\gamma}^{\delta}$.
Let

$$
l(y)=\frac{1}{T(i y)} \iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} e^{i y \xi} d \xi_{1} d \xi_{2}
$$

It can be proved that $l(y) \in L^{2}(-\infty, \infty)$. Indeed, there exist $\varepsilon_{1}>0, C>0$ such that for $y \in(-\infty, \infty)$,

$$
\begin{aligned}
|l(y)| & \left.\leqslant\left.\left|\iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\right| e^{\xi}\right|^{2} d \xi_{1} d \xi_{2}\left|\frac{1}{|T(i y)|} \max _{\xi \in \Omega^{\prime}}\right| e^{i y \xi} \right\rvert\, \\
& \leqslant C e^{(-\pi D \cos \alpha+\varepsilon)|y|} e^{\pi\left(1-\frac{1}{2 \gamma}|y|\right.} \\
& <C e^{-\varepsilon_{1}|y|} .
\end{aligned}
$$

Here we used: (i) $f(z) \in L_{a}^{2}[\Omega]$; and (ii) Lemma 2.1 and the fact that $\pi D \cos$ $\alpha-\pi(1-1 /(2 \gamma))>0$ to produce the constant $C>0$ and $\varepsilon_{1}>0$, respectively.

Thus, by Plancherel theorem (see [9, Theorem 9.13]) and (14), we have

$$
\int_{-\infty}^{\infty}|l(y)|^{2} d y=0
$$

and for $y \in(-\infty, \infty), l(y)=0$, i.e.,

$$
\begin{equation*}
\iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} e^{i y \xi} d \xi_{1} d \xi_{2}=0 \tag{15}
\end{equation*}
$$

since $l(y)$ is continuous in $(-\infty, \infty)$.
Consider the integral

$$
H(w)=\iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} e^{w \xi} d \xi_{1} d \xi_{2}=\iint_{\Omega} \overline{f(z)} z^{w} d x d y
$$

We claim that $H(w)$ is analytic in $\operatorname{Re}(w)>-\frac{1}{2}$. Indeed, for any $R>0$, when $-\frac{1}{2} \leqslant \operatorname{Re}(w) \leqslant R,|\operatorname{Im}(w)| \leqslant R$,

$$
\begin{aligned}
\int & \int_{\Omega}\left|\overline{f(z)} z^{w}\right| d x d y \\
= & \iint_{\Omega^{\prime}}\left|\overline{f\left(e^{\xi}\right)}\right|\left|e^{\xi}\right|^{2}\left|e^{w \xi}\right| d \xi_{1} d \xi_{2} \\
= & \left.\iint_{\Omega^{\prime}} \mid \overline{f\left(e^{\xi}\right)}\right)\left|e^{\xi}\right|^{2} e^{\operatorname{Re}(w) \xi_{1}-\operatorname{Im}(w) \xi_{2}} d \xi_{1} d \xi_{2} \\
\leqslant & \left.e^{R \pi(1-1 / 2 \gamma)} \iint_{\Omega^{\prime}} \mid \overline{f\left(e^{\xi}\right)}\right)\left|e^{\xi}\right|^{2}\left|e^{\xi}\right|^{R e(w)} d \xi_{1} d \xi_{2} \\
\leqslant & e^{R \pi(1-1 / 2 \gamma)}\left[\iiint_{\Omega^{\prime}} \mid \overline{\left|e^{\xi}\right| \geqslant 1}\right. \\
& \left.+\int e^{\Omega^{\prime}}\right)\left.\left|\left|e^{\xi}\right|^{2}\right| e^{\xi}\right|^{R} d \xi_{1} d \xi_{2} \\
\mid f\left(e^{\xi}\right) & \left.\left|e^{\xi}\right|^{2}\left|e^{\xi}\right|^{-1 / 2} d \xi_{1} d \xi_{2}\right] \\
\leqslant & e^{R \pi(1-1 / 2 \gamma)} \iint_{\Omega^{\prime}}\left|\overline{f\left(e^{\xi}\right)}\right|\left|e^{\xi}\right|^{2}\left[\left|e^{\xi}\right|^{R}+\left|e^{\xi}\right|^{-1 / 2}\right] d \xi_{1} d \xi_{2} \\
= & e^{R \pi(1-1 / 2 \gamma)} \iint_{\Omega}|\overline{f(z)}|\left[|z|^{R}+|z|^{-1 / 2}\right] d x d y \\
\leqslant & e^{R \pi(1-1 / 2 \gamma)}\left[\iint_{\Omega}|\overline{f(z)}|^{2} d x d y\right]^{1 / 2}\left[\iint_{\Omega}\left[|z|^{R}+|z|^{-1 / 2}\right]^{2} d x d y\right]^{1 / 2}
\end{aligned}
$$

By using the same argument as in the proof of Lemma 1.2, we can get

$$
\begin{aligned}
& \iint_{\Omega}|z|^{2 R} d x d y<\infty \\
& \iint_{\Omega}|z|^{R-1 / 2} d x d y<\infty \\
& \iint_{\Omega}|z|^{-1} d x d y<\infty
\end{aligned}
$$

Thus, for $-\frac{1}{2} \leqslant \operatorname{Re}(w) \leqslant R,|\operatorname{Im}(w)| \leqslant R$,

$$
\iint_{\Omega}\left|\overline{f(z)} z^{w}\right| d x d y<\infty
$$

and by using similar arguments to that in [1, Sect. 3], we can prove, using Remark 1.2, that $H(w)$ is analytic in $-\frac{1}{2}<\operatorname{Re}(w)<R$, $|\operatorname{Im}(w)|<R$. Since R can be arbitrarily large, therefore $H(w)$ is analytic in $\operatorname{Re}(w)>-\frac{1}{2}$.

By (15), for $y \in(-\infty, \infty), H(i y)=0$. This implies that $H(w)=0$ for $\operatorname{Re}(w)>-\frac{1}{2}$. In particular, $H(n)=0, n=0,1,2, \ldots$, i.e.,

$$
\iint_{\Omega} \overline{f(z)} z^{n} d x d y=0, \quad n=0,1,2, \ldots
$$

In order to prove our main theorem in Section 3, we need also the following two results:

Lemma 2.5 (Carleman's Theorem (see Levin [7, p. 105])). If $g(w)$ is analytic and bounded in the half-plane $\operatorname{Im}(w) \geqslant 0$, and

$$
\int_{-\infty}^{\infty} \frac{\log ^{-}|g(t)|}{1+t^{2}} d t=\infty
$$

then $g(w) \equiv 0$.
Lemma 2.6 (M.M. Dzhrbasian (see Mergelyan [8, Sect. 10, Lemma 1])). Let $p(r)$ be given as in Condition $\Omega(\mathrm{I})$, let

$$
M_{n}=\int_{r_{0}}^{\infty} \exp [-p(r)] r^{n} d r
$$

and

$$
\Phi(r)=\sup _{n \geqslant 1} \frac{r^{n}}{\sqrt{M_{2 n}}} .
$$

Then there exists $q_{0}>0$ such that for r sufficiently large, $\log \Phi(r) \geqslant q_{0} p(r)$.

3. A COMPLETENESS THEOREM

Now we give the main result of this paper:
Theorem 1. Assume that the domain Ω and the sequence $\left\{\tau_{n}\right\}$ satisfy Conditions $\Omega(\mathrm{I}), \Omega(\mathrm{II})$, (I), (II), (IIIa) and (4) given in Section 1. Moreover, assume

$$
\begin{equation*}
2 \gamma(1-D \cos \alpha)<1 \tag{16}
\end{equation*}
$$

Let

$$
\begin{equation*}
\eta=\max \left\{\vartheta, \frac{1}{h}+\varepsilon_{0}\right\} \tag{17}
\end{equation*}
$$

where ϑ is defined in (2), ε_{0} is some positive number, and

$$
\begin{equation*}
h=\max _{0<x<b}\left\{\frac{x}{\sqrt{D^{2} \sin ^{2} \alpha+x^{2}}}\left[2 D \cos \alpha-2+\frac{1}{\gamma}-2 x\right]\right\} \tag{18}
\end{equation*}
$$

with $b=D \cos \alpha-1+\frac{1}{2 \gamma}$.
If

$$
\begin{equation*}
\int^{\infty} \frac{p(r)}{r^{1+\eta}} d r=+\infty \tag{19}
\end{equation*}
$$

then the system $\left\{z^{\tau_{1}}, z^{\tau_{2}}, z^{\tau_{3}}, \ldots\right\}$ is complete in $L_{a}^{2}[\Omega]$.
Remark 3. Letting $\alpha \rightarrow 0$ in (18), we recover Shen's original condition (see (3)).

Proof of Theorem 1. By Lemma 1.1, we only need to prove that if $f \in$ $L_{a}^{2}[\Omega]$, and

$$
\left(f(z), z^{\tau_{n}}\right)=0, \quad n=1,2,3, \ldots
$$

then $f(z) \equiv 0$. So, we assume that $\left(f(z), z^{\tau_{n}}\right)=0,=1,2,3, \ldots$.

Recalling the definition of $G(s)$ (see (12)), we first note that we only need to prove that $G(s) \equiv 0$ for $s \in Q_{\gamma}^{\delta}$. Indeed if so, by Lemma 2.4, we will have

$$
\begin{equation*}
\left(f(z), z^{n}\right)=0, \quad n=0,1,2, \ldots \tag{20}
\end{equation*}
$$

and using M. Dzhrbasian's result, assuming that

$$
\begin{equation*}
\int^{\infty} \frac{p(r)}{r^{1+\omega}} d r=+\infty \tag{21}
\end{equation*}
$$

the system $\left\{z^{n}\right\}(n=0,1,2, \ldots)$ is complete in $L_{a}^{2}[\Omega]$. It follows easily from the conditions of our theorem that (21) is satisfied. Thus, by Lemma 1.1 and (20), we will have $f(z) \equiv 0$ for $z \in \Omega$.

Now we prove that for $s \in Q_{\gamma}^{\delta}, G(s) \equiv 0$. We will use Lemma 2.3. Let t_{n} be defined as in Lemma 2.3, i.e., $n \geqslant t_{n} \geqslant(1-\lambda) n$ (where λ is a sufficiently small positive number).

By (12), for $s \in Q_{\gamma}^{\delta}$,

$$
\begin{aligned}
G(s)= & \iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2}\left[I(s-\xi)-\sum_{\left|\tau_{k}\right|<t_{n}} \frac{e^{-\tau_{k}(s-\xi)}}{T^{\prime}\left(\tau_{k}\right)}\right] d \xi_{1} d \xi_{2} \\
& +\iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} \sum_{\left|\tau_{k}\right|<t_{n}} \frac{e^{-\tau_{k}(s-\xi)}}{T^{\prime}\left(\tau_{k}\right)} d \xi_{1} d \xi_{2} \\
= & G_{1, t_{n}}(s)+G_{2, t_{n}}(s) .
\end{aligned}
$$

Since $\left(f(z), z^{\tau_{n}}\right)=0, n=1,2,3, \ldots$, we have

$$
\iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} e^{\tau_{n} \xi} d \xi_{1} d \xi_{2}=0, \quad n=1,2,3, \ldots
$$

Thus,

$$
G_{2, t_{n}}(s)=\sum_{\left|\tau_{k}\right|<t_{n}} \frac{e^{-\tau_{k} s}}{T^{\prime}\left(\tau_{k}\right)} \iint_{\Omega^{\prime}} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} e^{\tau_{k} \xi} d \xi_{1} d \xi_{2}=0
$$

Hence, for $s \in Q_{\gamma}^{\delta}, G(s)=G_{1, t_{n}}(s)$.

By Lemma 2.3, for $s=u+i v \in Q_{\gamma}^{\delta}$,

$$
\begin{aligned}
|G(s)|= & \left|G_{1, t_{n}}(s)\right| \\
\leqslant & \left.C^{t_{n}}\left[e^{-u t_{n} \sin (\mu \pi)} \iiint_{\operatorname{Re}(s-\xi) \geqslant 0}\left|\overline{\Omega^{\prime}}\right| e^{\xi}\right)| | e^{\xi}\right|^{2}\left|e^{\xi}\right|^{t_{n} \sin (\mu \pi)} d \xi_{1} d \xi_{2} \\
& \left.+e^{-u t_{n}} \iint \underset{\operatorname{Re}(s-\xi) \leqslant 0}{ }\left|\overline{f\left(e^{\xi}\right)}\right|\left|e^{\xi}\right|^{2}\left|e^{\xi}\right|^{t_{n}} d \xi_{1} d \xi_{2}\right],
\end{aligned}
$$

where C (and C_{1}, C_{2} below) are constants independent of n and s.
Hence, for $\operatorname{Re}(s)=u>0, s \in Q_{\gamma}^{\delta}$,

$$
\begin{aligned}
|G(s)| & \leqslant C^{t_{n}}\left[\frac{\iint_{\Omega}|f(z)||z|^{t_{n}} d x d y}{\left|e^{s}\right|_{n}^{t_{n} \sin (\mu \pi)}}+\frac{\iint_{\Omega}|f(z)||z|^{t_{n}} d x d y}{\left|e^{s}\right|^{t_{n}}}\right] \\
& \leqslant C_{1}^{t_{n}} \frac{\iint_{\Omega}|f(z)||z|^{t_{n}} d x d y}{\left|e^{s}\right|^{t_{n} \sin (\mu \pi)}}
\end{aligned}
$$

By Schwarz's inequality,

$$
|G(s)| \leqslant C_{1}^{t_{t}} \frac{\left[\iint_{\Omega}|f(z)|^{2} d x d y\right]^{1 / 2}\left[\iint_{\Omega}|z|^{2 t_{n}} d x d y\right]^{1 / 2}}{\left|e^{s}\right|^{t_{n} \sin (\mu \pi)}}
$$

Note that

$$
\begin{aligned}
\iint_{\Omega}|z|^{2 t_{n}} d x d y & \leqslant \int_{0}^{r_{0}} 2 \pi r r^{2 t_{n}} d r+\int_{r_{0}}^{\infty} r^{2 t_{n}} \sigma(r) d r \\
& \leqslant \frac{2 \pi}{2 t_{n}+2} r_{0}^{2 t_{n}+2}+\int_{r_{0}}^{\infty} r^{2 t_{n}} e^{-p(r)} d r \\
& \leqslant c_{1}^{t_{n}}+c_{2}^{t_{n}} \int_{r_{0}}^{\infty} r^{2 t_{n}} e^{-p(r)} d r \\
& \leqslant c_{3}^{t_{n}} \int_{r_{0}}^{\infty} r^{2 t_{n}} e^{-p(r)} d r
\end{aligned}
$$

where $c_{1}-c_{3}$ are positive constants independent of n and s.
Thus, since $f \in L_{a}^{2}[\Omega]$, we have

$$
|G(s)| \leqslant C_{2}^{t_{n}} \frac{\left[\int_{r_{0}}^{\infty} r^{2 t_{n}} e^{-p(r)} d r\right]^{1 / 2}}{\left|e^{s}\right|^{t_{n}} \sin (\mu \pi)} \leqslant C_{2}^{n} \frac{\left[\int_{r_{0}}^{\infty} r^{2 n} e^{-p(r)} d r\right]^{1 / 2}}{\left|e^{s}\right|^{(1-\lambda) n} \sin (\mu \pi)}
$$

where in the last step, we used the conditions $\operatorname{Re}(s)=u>0$ and $n \geqslant t_{n} \geqslant$ $(1-\lambda) n$.

Since the above inequality holds for all $n=1,2,3, \ldots$, we have for $\operatorname{Re}(s)=u>0, s \in Q_{\gamma}^{\delta}$,

$$
|G(s)| \leqslant \inf _{n \geqslant 1} C_{2}^{n} \frac{\left[\int_{r_{0}}^{\infty} r^{2 n} e^{-p(r)} d r\right]^{1 / 2}}{\left|e^{s}\right|^{(1-\lambda) n} \sin (\mu \pi)}
$$

Now using Lemma 2.6, for

$$
M_{n}=\int_{r_{0}}^{\infty} r^{n} e^{-p(r)} d r
$$

and

$$
\Phi(\bar{r})=\sup _{n \geqslant 1} \frac{\bar{r}^{n}}{\sqrt{M_{2 n}}}
$$

where $\bar{r}=c\left|e^{s}\right|^{(1-\lambda) \sin (\mu \pi)}$ with c a constant independent of s and n, then there exists a constant $q>0$ such that for $\operatorname{Re}(s)$ sufficiently large (i.e., \bar{r} sufficiently large),

$$
\frac{1}{\Phi(\bar{r})} \leqslant e^{-q p(\bar{r})}
$$

Hence, for $s \in Q_{\gamma}^{\delta}$ and $\operatorname{Re}(s)>0$ sufficiently large, we have

$$
\begin{equation*}
\left.|G(s)| \leqslant \frac{1}{\Phi(\bar{r})} \leqslant e^{-q p\left(c\left|e^{s}\right|(1-\lambda) \sin (\mu \pi)\right.}\right) . \tag{22}
\end{equation*}
$$

We know that $G(s)$ is analytic in Q_{γ} and bounded in Q_{γ}^{δ}. In order to use Lemma 2.5 (Carleman's theorem), we transform Q_{γ}^{δ} (with respect to s) into the upper half-plane $\operatorname{Im}(w) \geqslant 0$:
(i) First, let $w_{1}=e^{s}$. Then Q_{γ}^{δ} is transformed into an angle domain $\left|\arg \left(w_{1}\right)\right| \leqslant \pi l$, where by (11),

$$
\begin{equation*}
l=D \cos \alpha-\delta-1+\frac{1}{2 \gamma}>0 \tag{23}
\end{equation*}
$$

(ii) Let $w_{2}=w_{1}^{1 /(2 l)}$. The above angle domain is then transformed into the right half-plane $\operatorname{Re}\left(w_{2}\right) \geqslant 0$.
(iii) Finally, let $w=i w_{2}$. The right half-plane is then transformed into the upper half-plane $\operatorname{Im}(w) \geqslant 0$.

Now, we have

$$
\left|e^{s}\right|=\left|w_{1}\right|=\left|w_{2}^{2 l}\right|=\left|(-i w)^{2 l}\right|=\left|w^{2 l}\right|
$$

and

$$
G(s)=G\left(\log w_{1}\right)=G\left(\log w_{2}^{2 l}\right)=G\left(\log (-i w)^{2 l}\right) .
$$

Let $g(w)=G\left(\log (-i w)^{2 l}\right)$. Clearly, $g(w)$ is analytic and bounded in the halfplane $\operatorname{Im}(w) \geqslant 0$. By (22), for $\operatorname{Im}(w) \geqslant 0$ and $|w|$ sufficiently large, we have

$$
\begin{equation*}
|g(w)| \leqslant e^{-q p\left(c|w|^{2 /(1-\lambda) \sin (\mu \pi)}\right)}=e^{-q p\left(c|w|^{m}\right)} \tag{24}
\end{equation*}
$$

where $c, q>0$ are constants independent of w, l is given by (23), and

$$
\begin{equation*}
m=2 l(1-\lambda) \sin (\mu \pi)=\sin (\mu \pi)\left[2 D \cos \alpha-2+\frac{1}{\gamma}-2 \delta\right](1-\lambda) \tag{25}
\end{equation*}
$$

Recall that in (25): (i) D, α and γ are fixed since they are determined by $\left\{\tau_{n}\right\}$ and Ω, respectively; (ii) $\lambda>0$ can be taken arbitrarily small; (iii) $0<\delta$ $<D \cos \alpha-1+1 /(2 \gamma)$ (see (16) and (10)); and (iv) $\mu>0$ and $\tan (\mu \pi)$ $<\delta /(D \sin \alpha)$ (see Lemma 2.3).

Let $\tan (\mu \pi) \rightarrow \delta /(D \sin \alpha)$, then

$$
\sin (\mu \pi) \rightarrow \frac{\delta}{\sqrt{D^{2} \sin ^{2} \alpha+\delta^{2}}}
$$

and denote

$$
\begin{equation*}
m^{\prime}=\frac{\delta}{\sqrt{D^{2} \sin ^{2} \alpha+\delta^{2}}}\left[2 D \cos \alpha-2+\frac{1}{\gamma}-2 \delta\right](1-\lambda) \tag{26}
\end{equation*}
$$

It is clear that by (24), for $\operatorname{Im}(w) \geqslant 0$ and $|w|$ sufficiently large, we have

$$
\begin{equation*}
|g(w)| \leqslant e^{-q p\left(c|w|^{m^{\prime}}\right)} \tag{27}
\end{equation*}
$$

Since δ can be any number satisfying $0<\delta<b=D \cos \alpha-1+1 /(2 \gamma)$, letting

$$
\begin{equation*}
h^{\prime}=\max _{0<\delta<b} m^{\prime} \tag{28}
\end{equation*}
$$

we see that in (27), if m^{\prime} is replaced by h^{\prime}, the inequality still holds, i.e., for $\operatorname{Im}(w) \geqslant 0$ and $|w|$ sufficiently large, we have

$$
\begin{equation*}
|g(w)| \leqslant e^{-q p\left(c|w|^{h^{\prime}}\right)} \tag{29}
\end{equation*}
$$

We note that $h^{\prime}=h(1-\lambda)$. Since $\lambda>0$ can be taken arbitrarily small, we can choose λ sufficiently small such that

$$
\frac{1}{h^{\prime}}<\frac{1}{h}+\varepsilon_{0}
$$

where $\varepsilon_{0}>0$ is from (17). By Conditions (17)-(19), we have

$$
\begin{equation*}
\int^{\infty} \frac{p(r)}{r^{1+1 / h^{\prime}}} d r=+\infty \tag{30}
\end{equation*}
$$

Now we prove that $g(w) \equiv 0$ on $\operatorname{Im}(w) \geqslant 0$. This in turn will imply that $G(s) \equiv 0$ on Q_{λ}^{δ}, and thus the proof will be completed. Indeed, by (29),

$$
\begin{aligned}
\int^{\infty} \frac{\log |g(t)|}{t^{2}} d t & \leqslant \int^{\infty} \frac{-q p\left(c t^{h^{\prime}}\right)}{t^{2}} d t \\
& =-q \int^{\infty} \frac{p(r) 1}{\left(\frac{r}{c}\right)^{2 / h^{\prime}} h^{\prime}}\left(\frac{r}{c}\right)^{\frac{1}{h^{\prime}-1}}\left(\frac{1}{c}\right) d r \\
& =-C \int^{\infty} \frac{p(r)}{r^{1+1 / h^{\prime}}} d r
\end{aligned}
$$

where C is a positive constant.
Thus, by (30),

$$
\int^{\infty} \frac{\log |g(t)|}{t^{2}} d t=-\infty
$$

hence,

$$
\int^{\infty} \frac{\log |g(t)|}{1+t^{2}} d t=-\infty
$$

Similarly, we can get

$$
\int_{-\infty} \frac{\log |g(t)|}{t^{2}} d t<\int_{-\infty} \frac{-q p\left(c|t|^{h^{\prime}}\right)}{t^{2}} d t=\int^{\infty} \frac{-q p\left(c t^{h^{\prime}}\right)}{t^{2}} d t=-\infty
$$

where $\int_{-\infty}$ means that the upper limit of the integral is a negative number with sufficiently large magnitude. Hence

$$
\int_{-\infty} \frac{\log |g(t)|}{1+t^{2}} d t=-\infty
$$

Thus, we have

$$
\int_{-\infty}^{\infty} \frac{\log |g(t)|}{1+t^{2}} d t=-\infty
$$

and by Lemma 2.5 (Carleman's theorem), $g(w) \equiv 0$.
Remark 4. In (18), h is well defined. Indeed, let

$$
\begin{gathered}
A=2 b=2 D \cos \alpha-2+1 / \gamma \\
B=D^{2} \sin ^{2} \alpha
\end{gathered}
$$

and

$$
y(x)=\frac{x}{\sqrt{D^{2} \sin ^{2} \alpha+x^{2}}}[2 D \cos \alpha-2+1 / \gamma-2 x]=\frac{x}{\sqrt{B+x^{2}}}(A-2 x) .
$$

Since $2 \gamma(1-D \cos \alpha)<1, A>0$, it is easy to verify that $y^{\prime}(0)=A / \sqrt{B}>0$, and $y^{\prime}(A / 2)=-(2 A) / \sqrt{A^{2}+4 B}<0$. Hence, there exists an $\bar{x} \in(0, A / 2)=$ $(0, b)$ such that $y(\bar{x})=h$.

4. CASE WITH WEIGHT

Assume that $p_{0}(z)$ is a real-valued function satisfying $p_{0}(z) \geqslant p(|z|)=p(r)$ for $|z|=r$ sufficiently large (say $r \geqslant r_{0}$), where $p(r)$ is defined by (1). In this section, we consider the completeness of $\left\{z^{\tau_{1}}, z^{\tau_{2}}, \ldots\right\}$ in $L_{a}^{2}[\Omega]$ with the weight $e^{-p_{0}(z)}$.

We say $f(z) \in L_{a}^{2}\left[\Omega, p_{0}\right]$, if $f(z)$ is analytic in Ω and

$$
\iint_{\Omega} e^{-p_{0}(z)}|f(z)|^{2} d x d y<+\infty
$$

In the space $L_{a}^{2}\left[\Omega, p_{0}\right]$, we define the inner product by

$$
(g(z), f(z))=\iint_{\Omega} e^{-p_{0}(z)} g(z) \overline{f(z)} d x d y
$$

where $f(z), g(z) \in L_{a}^{2}\left[\Omega, p_{0}\right]$.
Theorem 2. Under the conditions of Theorem 1 , the sequence $\left\{z^{\tau_{1}}, z^{\tau_{2}}, \ldots\right\}$ is complete in $L_{a}^{2}\left[\Omega, p_{0}\right]$.

The proof is almost the same as that of Theorem 1. We only need to note the following points:

In the estimate of the upper bound of $|G(s)|$, we now have for $s \in Q_{\gamma}^{\delta}$,

$$
G(s)=\iint_{\Omega^{\prime}} e^{-p_{0}\left(e^{\xi}\right)} \overline{f\left(e^{\xi}\right)}\left|e^{\xi}\right|^{2} I(s-\xi) d \xi_{1} d \xi_{2}
$$

and for $\operatorname{Re}(s)=u>0, s \in Q_{\gamma}^{\delta}$,

$$
|G(s)| \leqslant C_{1}^{t_{n}} \frac{\iint_{\Omega} e^{-p_{0}(z)}|f(z)||z|^{t_{n}} d x d y}{\left|e^{s}\right|^{t_{n}} \sin (\mu \pi)}
$$

and

$$
\begin{aligned}
& \iint_{\Omega} e^{-p_{0}(z)}|f(z)||z|^{t_{n}} d x d y \\
& \quad=\iint_{\Omega} e^{-1 / 2 p_{0}(z)}|f(z)| e^{-1 / 2 p_{0}(z)}|z|^{t_{n}} d x d y \\
& \leqslant C_{1}\left[\iint_{\Omega} e^{-p_{0}(z)|z|^{2 t_{n}}} d x d y\right]^{1 / 2} \\
& \\
& \leqslant C_{2}^{t_{n}}\left[\int_{r_{0}}^{\infty} r e^{-p_{0}(r)} r^{2 t_{n}} d r\right]^{1 / 2} \\
& \leqslant C_{2}^{t_{n}}\left[\sup _{r \geqslant 0}\left(r e^{-1 / 2 p_{0}(r)}\right]^{1 / 2}\left[\int_{r_{0}}^{\infty} e^{-1 / 2 p_{0}(r)} r^{2 t_{n}} d r\right]^{1 / 2}\right. \\
& \leqslant C_{3}^{t_{n}}\left[\int_{r_{0}}^{\infty} e^{-1 / 2 p_{0}(r)} r^{2 t_{n}} d r\right]^{1 / 2} \\
& \leqslant C_{3}^{t_{n}}\left[\int_{r_{0}}^{\infty} e^{-1 / 2 p(r)} r^{2 t_{n}} d r\right]^{1 / 2},
\end{aligned}
$$

where C_{1}, C_{2} and C_{3} are constants independent of t_{n} and n. Then, as in the proof of Theorem 1, we can prove that $G(s) \equiv 0$ for $s \in Q_{\gamma}^{\delta}$.

REFERENCES

1. A. Boivin and C. Zhu, On the L^{2}-completeness of some systems of analytic functions, Complex Variables 45 (2001), 273-295.
2. T. Carleman, Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. Mat. Atron. Fys. 17 (1923), 1-30.
3. E.W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
4. M.M. Dzhrbasian, Metric theorems on completeness and on the representation of analytic functions, Uspehi Mat. Nauk (N.S.) 5 (1950), (37), 194-198. [In Russian]
5. M.M. Dzhrbasian, Some questions of the theory of weighted polynomial approximation in a complex domain, Mat. Sbornik (N.S.) 36 (1955), 353-440. [In Russian]
6. D. Gaier, "Lectures on Complex Approximation," Birkhäuser, Boston Basel Stuttgart, 1985.
7. B.Ja. Levin, "Lectures on Entire Functions," Translations of Mathematical Monographs, Vol. 150, Amer. Math. Soc., Providence RI., 1996.
8. S.M. Mergelyan, On the completeness of systems of analytic functions, Amer. Math. Soc. Transl. Ser. 2, 19 (1962), 109-166.
9. W. Rudin, "Real and Complex Analysis," 3rd ed., McGraw-Hill, New York, 1987.
10. X. Shen, On the closure $\left\{z^{\tau_{n}} \log ^{j} z\right\}$ in a domain of the complex plane, Acta Math. Sinica 13 (1963), 405-418. [In Chinese]; Chinese Math. 4 (1963), 440-453. [In English]
11. X. Shen, On approximation of functions in the complex plane by the system of functions $\left\{z^{\tau_{n}} \log ^{j} z\right\}$, Acta Math. Sinica 14 (1964), 406-414. [In Chinese]; Chinese Math. 5 (1965), 439-446. [In English]
